Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6.
نویسندگان
چکیده
Animal peptide toxins have become powerful tools to study structure-function relationships and physiological roles of voltage-activated Ca(2+) channels. In the present study, we investigated the effects of PnTx3-6, a neurotoxin purified from the venom of the spider Phoneutria nigriventer on cloned mammalian Ca(2+) channels expressed in human embryonic kidney 293 cells and endogenous Ca(2+) channels in N18 neuroblastoma cells. Whole-cell patch-clamp measurements indicate that PnTx3-6 reversibly inhibited L-(alpha(1C)/Ca(v)1.2), N-(alpha(1B)/Ca(v)2.2), P/Q-(alpha(1A)/Ca(v)2.1), and R-(alpha(1E)/Ca(v)2.3) type channels with varying potency (alpha(1B) > alpha(1E) > alpha(1A) > alpha(1C)) and IC(50) values of 122, 136, 263, and 607 nM, respectively. Inhibition occurred without alteration of the kinetics or the voltage dependence of the exogenously expressed Ca(2+) channels. In N18 cells, PnTx3-6 exhibited highest potency against N-type (conotoxin-GVIA-sensitive) current. In contrast to its effects on high voltage-activated Ca(2+) channels subtypes, application of 1 microM PnTx3-6 did not affect alpha(1G)/Ca(v)3.1 T-type Ca(2+) channels. Based on our study, we suggest that PnTx3-6 acts as a omega-toxin that targets high voltage-activated Ca(2+) channels, with a preference for the Ca(v)2 subfamily (N-, P/Q-, and R-types).
منابع مشابه
Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes.
We have isolated a cardiotoxin, denoted jingzhaotoxin-III (JZTX-III), from the venom of the Chinese spider Chilobrachys jingzhao. The toxin contains 36 residues stabilized by three intracellular disulfide bridges (I-IV, II-V, and III-VI), assigned by a chemical strategy of partial reduction and sequence analysis. Cloned and sequenced using 3'-rapid amplification of cDNA ends and 5'-rapid amplif...
متن کاملA novel family of insect-selective peptide neurotoxins targeting insect large-conductance calcium-activated K+ channels isolated from the venom of the theraphosid spider Eucratoscelus constrictus.
Spider venoms are actively being investigated as sources of novel insecticidal agents for biopesticide engineering. After screening 37 theraphosid spider venoms, a family of three new "short-loop" inhibitory cystine knot insecticidal toxins (κ-TRTX-Ec2a, κ-TRTX-Ec2b, and κ-TRTX-Ec2c) were isolated and characterized from the venom of the African tarantula Eucratoscelus constrictus. Whole-cell pa...
متن کاملInhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV.
Hainantoxin-III and hainantoxin-IV, isolated from the venom of the Chinese bird spider Seleconosmia hainana, are neurotoxic peptides composed of 33-35 residues with three disulfide bonds. Using whole-cell patch-clamp technique, we investigated their action on ionic channels of adult rat dorsal root ganglion neurons. It was found that the two toxins did not affect Ca2+ channels (both high voltag...
متن کاملThe Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels
Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molec...
متن کاملContributions of Voltage- and Ca -Activated Conductances to GABA-Induced Depolarization in Spider Mechanosensory Neurons
Panek I, Höger U, French AS, Torkkeli PH. Contributions of voltageand Ca -activated conductances to GABA-induced depolarization in spider mechanosensory neurons. J Neurophysiol 99: 1596–1606, 2008. First published January 23, 2008; doi:10.1152/jn.01267.2007. Activation of ionotropic -aminobutyric acid type A (GABAA) receptors depolarizes neurons that have high intracellular [Cl ], causing inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 314 3 شماره
صفحات -
تاریخ انتشار 2005